Lagrangian Structures for the Stokes, Navier-stokes and Euler Equations

نویسندگان

  • Jacky Cresson
  • Sébastien Darses
چکیده

— We prove that the Navier-Stokes, the Euler and the Stokes equations admit a Lagrangian structure using the stochastic embedding of Lagrangian systems. These equations coincide with extremals of an explicit stochastic Lagrangian functional, i.e. they are stochastic Lagrangian systems in the sense of [6].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N ov 2 00 8 LAGRANGIAN STRUCTURES FOR THE STOKES , NAVIER - STOKES AND EULER EQUATIONS by Jacky Cresson & Sébastien Darses

— We prove that the Navier-Stokes, the Euler and the Stokes equations admit a Lagrangian structure using the stochastic embedding of Lagrangian systems. These equations coincide with extremals of an explicit stochastic Lagrangian functional, i.e. they are stochastic Lagrangian systems in the sense of [6].

متن کامل

Global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-alpha) equations on bounded domains

We prove the global well-posedness and regularity of the (isotropic) Lagrangian averaged Navier{Stokes (LANS-¬ ) equations on a three-dimensional bounded domain with a smooth boundary with no-slip boundary conditions for initial data in the set fu 2 Hs \H1 0 j Au = 0 on @« ; div u = 0g, s 2 [3; 5), where A is the Stokes operator. As with the Navier{Stokes equations, one has parabolic-type regul...

متن کامل

1 5 A ug 2 00 5 Lagrangian dynamics of the Navier - Stokes equation

Most researches on fluid dynamics are mostly dedicated to obtain the solutions of Navier-Stokes equation which governs fluid flow with particular boundary conditions and approximations. We propose an alternative approach to deal with fluid dynamics using the lagrangian. We attempt to develop a gauge invariant lagrangian which reconstructs the Navier-Stokes equation through the Euler-Lagrange eq...

متن کامل

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

The Anisotropic Lagrangian Averaged Euler and Navier-Stokes Equations

The purpose of this paper is twofold. First, we give a derivation of the Lagrangian averaged Euler (LAE-α) and Navier-Stokes (LANS-α) equations. This theory involves a spatial scale α and the equations are designed to accurately capture the dynamics of the Euler and Navier-Stokes equations at length scales larger than α, while averaging the motion at scales smaller than α. The derivation involv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008